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We present calculations of the full spectra of Lyapunov exponents
for 8- and 32-particle systems with periodic boundary conditions and in-
teracting with the repulsive part of 2 Lennard-Jones potential both in
equilibrium and nonequilibrium steady states. Lyapunov characteristic
exponents A, describe the mean exponential rates of divergence and con-
vergence of neighbouring trajectories in phase-space. They are useful in
characterizing the stochastic properties of a dynamical system. A new
algorithm for their calculation is presented which incorporates ideas from
control theory and constraint nonequilibrium molecular dynamics [1,2].

For the simulations isokinetic equations of motion based on Gauss’s
principle of least constraint are used, which are a limiting case of the even
more general isothermal mechanics invented by S. Nos&. Nonequilibrium
steady states are generated by the application of an external field F,
through which an equal number of particles are accelerated in opposite
directions. In equilibrium with no external field applied (F, = 0), the
Lyapunov spectra are symmetrical around zero and the sum over all ex-
ponents vanishes. This is shown in the figure for an equilibrium 32-body
fluid (reduced density = 0.5, reduced temperature = 1.0). The smooth
line is the fit of a power law, A = an?, to the data, where n is the number
of positive exponents less or equal to a given value of A. All quantities
are given in reduced units with the Lennard-Jones parameters o, ¢ and
the particle mass m acting as units of length, energy and mass, respec-
tively. We find a = 0.63 and 8 = 0.38. Such a power law may be derived
from the simple Debye model for vibrational frequencies in solids with
BDetye = 1/3. The maximum Lyapunov exponent is also close in value
to the Debye frequency.

For nonequilibrium steady states (F, # 0) the Lyapunov spectra are
not symmetrical and the sum over all Lyapunov exponents is negative.
This means that the distribution function eventually diverges to infinity
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indicating a collapse of the phase-space probability onto a subspace of
zero volume. This subspace is a fractal attractor as found previously in
simpler systems (3,4]. In these steady-state systems the energy supplied
by the external field is continuously dissipated and removed by the ther-
mostat. However, the Gauss and Nos2 equations of motion are invariant
with respect to time reversal. The only trajectories which could violate
the Second Law would have to start on the repeller states obtained from
the fractal attractor by a time reversal transformation. Since the re-
peller is also a fractal with zero volume in phase-space, the probability of
such trajectories to occur is zero. Thus Nosé mechanics resolves the old
reversibility paradox of Loschmidt for nonequilibrium steady states.
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